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Abstract—Yield learning and optimization are critical for ad-
vanced IC design and manufacturing. Recent advance in machine
learning has brought a lot of new opportunities in improving the
performance and efficiency of IC yield learning and optimization.
This paper surveys some recent results of using various machine
learning/deep learning techniques for such purpose, including
performance modeling under uncertainty, lithography modeling
with transfer/active learning, lithography hotspot detection, and
IC mask optimization. The state-of-the-art methods are explained,
and challenges/opportunities are discussed.

I. INTRODUCTION

Recent progress in machine learning has triggered advances
in various fields, such as computer vision, speech recognition,
natural language processing, robotics, and autonomous driving.
Tremendous experiments have demonstrated that machine learn-
ing is promising to solve data intensive tasks. Machine learning
problems can be categorized to supervised learning, unsuper-
vised learning, reinforcement learning, etc. A typical learning
procedure, especially for supervised learning, builds a model
upon a large training dataset, and expects good generalization
on testing datasets under the same distribution.

Successful applications of machine learning techniques have
been reported from various tasks. For example,

o Data classification. A data sample can be either a one-
dimensional (1D) data vector, a two-dimensional (2D)
image-like matrix, or even a multi-dimensional tensor. Each
data sample corresponds to a label, denoting its category.
The task is to predict the label given any input data sample.
A variety of models, such as logistic regression, support
vector machine (SVM), and neural networks, are developed
to tackle this task.

o Data generation, especially image generation. This task
refers to a set of generative models such as auto-encoder
and generative adversarial networks (GANs) [1]. The model
takes some distribution as input and generate new data
following the same distribution. One example for GAN is to
take a random latent code and generate images that mimic
the ones in the training dataset.

o Language processing. This task corresponds to a set of
recurrent models such as recurrent neural networks (RNNs)
[2]. Typical tasks include separate negative and positive
review comments for movies.

« Reinforcement learning. It mainly tackles problems in
robotics where a machine is taught how to take action
according to the environment. A famous example is the
AlphaGo from Google DeepMind for the goal game [3].

The impressive effectiveness of machine learning enables fast
expansion to design and manufacturing of VLSI circuits. Yield
estimation and optimization are critical to production costs and
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design cycles. In this paper, we use yield learning to denote both
yield estimation and optimization for brevity. Problems in yield
learning usually have following characteristics.

o High dimensional. Due to complexity of modern design
flow, yield is impacted by huge amount of factors, which
are often difficult to model accurately. In lithography related
problems, a mask clip can be viewed as an image with very
high resolution.

o Data intensive. VLSI designs easily go to millions and
billions of transistors. Huge amount of data can be extracted
from even one design. In addition, large amount of history
data is available from evolution of technology nodes.

o Computationally expensive. The modeling tasks in yield
learning often involve complicated physics effects that are
expensive to simulate. Monte Carlo simulation is sometimes
required to achieve high accuracy. Meanwhile, the optimiza-
tion tasks usually need iterative invocation of expensive
simulations.

With these characteristics, yield learning is a very promising area
to take advantages of the performance and efficiency of machine
learning techniques. This paper will review recent successful
applications of machine learning techniques to yield learn-
ing problems, e.g., performance modeling, lithography models,
hotspot detection, and mask optimization. The state-of-the-art
techniques are explained with motivations, empirical results, and
remaining challenges.

In the next few sections, different aspects of using machine
learning for yield learning and optimization will be discussed,
including performance modeling, lithography modeling, lithog-
raphy hotspot detection, and mask optimization. The paper is
then concluded with future directions in Section VI.

II. MACHINE LEARNING FOR PERFORMANCE MODELING

A. Statistical Performance Modeling

With the continuous scaling of integrated circuit (IC) tech-
nologies, the challenges associated with retaining robustness of
state-of-art designs continue to exacerbate [4]. At deep sub-
micron technologies, process variation prevails among the most
prominent factors limiting the product yield of analog and
mixed-signal (AMS) circuits [4]. Thus, it is indispensable to
consider this variation in the design flow of modern ICs. Con-
ventionally, performance modeling has been adopted to capture
this variability through analytical models that can be used in
various applications such as yield estimation [5]-[7] and design
optimization [8], [9].
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Mathematically, a performance model approximates a circuit-
level point of interest (Pol), e.g. gain, power, as an analytical
function of the process variables:

y~fi()=  mbmX) (1
m=1
where Y is the Pol, X is a vector containing the process variables
(PV), f1(X) is the modeling function, { m;m =1;2;:::; M}
contains the model coefficients, {bm; m = 1;2;:::; M} contains
the basis functions, and M denotes the total number of basis
functions.

Given a set of samples, the model coefficients in (1) are usu-
ally obtained through least-squares regression (LSR) by solving
the following optimization problem [10], [11]:

min [y - Bia; @)

where || @ ||2 is the “;-norm of a vector, and:
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In (3)-(4), N is the total number of samples, and x™ and
y(™ are the values of X and y at the n—th sample respectively.

However, LSR can build accurate models only when the
number of samples is much greater than the number of unknown
coefficients. Thus, given the high dimensionality of the perfor-
mance models in complex AMS circuit designs, the simulation
cost for building accurate models can be exorbitant. Hence, most
recent performance modeling techniques incorporate additional
information about the model to reduce the number of simulations
needed to build accurate models [12]-[16].

o = 1

B. Performance Modeling applications

One of the main applications of performance modeling is
capturing the major sources of variability in the design. In a
linear model, the coefficients, { m;m = 1;2;:::; M}, provide
the sensitivity information for the Pol with respect to each
device-level variation parameter. In practice, the magnitude of
a coefficient ; reflects the contribution of the corresponding
device-level variation parameter to the variability of the Pol. In
addition, statistical models can be used for worst-case corner
extraction for specific application [5].

Moreover, performance modeling can be applied for yield esti-
mation and optimization. In [6], [17], the statistical distribution
of the Pol is estimated based on Pol’s performance model to
estimate the associated parametric yield. In addition, [8], [9]
propose using the performance models to help improve the para-
metric yield by capturing correlations between the performance
variability and the device sizes, then adjusting these sizes to
improve the parametric yield.

C. Sparse Regression

In high dimensional modeling tasks, additional information
about the expected nature of the model can be leveraged to
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compensate for the limited number of simulations. Sparse regres-
sion has been proposed as an approach to build accurate sparse
performance models from underdetermined system of equations
where the number of samples is fewer than that of the unknown
model coefficients [12], [16].

Although the number of basis functions representing the
device level variability is large, a few of these basis functions
are required to accurately model a specific Pol. Hence, the
vector of coefficients ¢ contains a small number of non-zero
values corresponding to important basis functions [12]. This
information can be incorporated in the optimization problem in
(2), resulting in the following new formulation:

. 2
min ly — B
« ’ 5)
subject to |||y <

where || @ ||o is the “‘p-norm” of a vector and  is an upper

bound on the number of non-zero coefficients.

While the formulation in (5) accurately reflects the sparse
regression concept, the optimization problem is NP-hard. To
address this challenge, different approaches have been proposed.
In [12], the ““p-norm” constraint on ¢ is relaxed to an ““1-norm”
constraint. As a results of this change, the optimization problem
can be re-formulated into a convex optimization problem [12].

Other approaches proposed heuristic methods to solve the
optimization problem in (5) [16]. These approaches iteratively
choose a small number of important basis functions to include
in the model by examining the correlation between the basis
function and the performance values. As a first step, the corre-
lations between all basis functions and the Pol are computed,
then the basis function with the highest correlation is included
in the set of important basis functions. At the end of each
iteration, LSR is used to build a model using the important
basis functions only. This process continues until the  most
important basis function are chosen or a user-defined stopping
criteria is satisfied. Moreover, and since the value of is not
known beforehand, a cross-validation based approach is adopted
to arrive at its optimal value [12], [16].

D. Bayesian Methods

In literature, Bayesian analysis has been used to efficiently
build accurate performance models [14], [15], [17]. Bayesian
Model Fusion (BMF) leverages the fact that designing an AMS
circuit typically involves multiple stages (e.g., schematic simu-
lation, layout and post-layout simulation, etc.) [15]. Throughout
the different stages, simulation data is generated to verify all
performance metrics at each stage. BMF proposes to incorporate
early stage simulation data to efficiently build accurate models
at a late stage.

In principal, BMF starts by building a performance model for
the Pol at at the early-stage which provide a prior knowledge of
the late-stage model template. Then, using a Bayesian inference
framework, the model template is fused with a small number
of simulation data collected at the later stage to build the target
model [15].

Experimental results presented in [15] show that when applied
to an SRAM, with the Pol defined as the read delay from the
word line to the sense amplifier output, BMF demonstrated a
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Fig. 2 Hierarchical structure of AMS is exploited to leverage
semi-supervised leanring in performance modeling [13], [18].

Fig. 1 The CL-BMF procedure is illustrated whefg(x) is
tted using labeled and pseudo samples. [14].

8x runtime speedup over sparse regression without surrendering
any accuracy.
Moreover, a Co-Learning Bayesian Model Fusion (CL-BMF)
approach has been proposed to leverage performance side in-
formation to ef ciently build accurate performance models [14].
The key idea of CL-BMF is to build two models to estimate the
same performance metric. While one of the two models is thgfg 3 The hierarchical semi-supervised Bayesian modeling
relating the Pol to the process variation, the other model USgS mework is illustrated [13], [18].
other performance metrics in the design to estimate the same Pol. '
In practice, CL-BMF passes the knowledge from the alternative . L . : )
. . . ) circuit level. Such a mapping is often low-dimensional; thus
low-complexity model to the high complexity model (i.e. co-

learning) to reduce its training cost. The performance model <')t can be accurately approximated by using a small number

interest is treated as the high-complexity model, while the lo 2 S|mulat|o_n samples. Third, by combining the aforementioned
ow-dimensional models and an unlabeled data set, a complex,

complexity model provides the performance side informatio igh-dimensional performance model for the Pol can be built
(PSI) to reduce the training cost of the high-complexity modeE 9 1al perto . A
ased on semi-supervised learning as shown in Fig. 3.

These is done using a Bayesian inference framework that com-

bines: (i) the performance side information which enables co- To |mplement_th|s modeling techmqug, a Bayesian inference
learning, (ii) the prior knowledge about the model coef cients'S formulated to integrate the aforementioned three components,
' along with the prior knowledge on model coef cients, in a uni-

and (iii) a small number of training samples collected to buil& . .
the p(er)formance model g P ed framework. Experimental results shown in [13] demonstrate

In practice, the PSI used in CL-BMF is typically a Iow-tha:t tge6proposzd serr;:-superwsed (Ijeff[mlng approach can acktuev?JI
dimensional vector of alternative performance metrics in thgPt0 ©.5X Speedup when compared 1o sparse regression base

circuit, z, that is inexpensive to measure or simulate and can progch. ) ) )
used to accurately predict the Bol f,(z). With such choice of While the proposed approach in [13] assumes a hierarchical

2, f, can be used to generate cheap pseudo samplgsHat can structure for the AMS design, a more general semi-supervised

be fused with a set of labeled samples to build the nal modd[@mework was proposed in [19] which makes no assumption
f, as demonstrated in Fig. 1. In the gurR, samples wherg about the AMS circuit structure. The proposed framework incor-

was actually measured are used alongside R samples where porates a co-learning technique that leverages multiple views of

only z was measured in the circuit, and where pseudo sampl@? process variability to ef ciently build a performance model.

for y were generated, to build the model of interest [14]. Th? rstis the devicg Ievgl variations suph A8y 0N werr
while the second view is the underlying set of independent

E. Semi-Supervised Learning random variables, referred to as process variables. Traditionally,
The aforementioned performance modeling methods all fgderformance modeling targets expressing the Pol as an analytical
into the category of supervised learning. In other words, perfoiunction of PV; however, [19] proposes to capitalize on the infor-
mance models are built by using labeled or, at least, partialtpation provided by the device level variability as an alternative
labeled data only. Recently, a new direction, derived from semiiew to ef ciently build the performance model for the Pol.
supervised learning, was proposed to take advantage of unlabeleds shown in Fig. 4, the key idea is to use a small number
data to further improve the accuracy of performance modelimgf labeled samples to build an initial model for each of the
for AMS designs [13], [18], [19]. views of the data, then attempt to iteratively bootstrap from
The proposed technique in [13] makes use of the hierarchidéile initial models using unlabeled data. In other words, initial
structure of an AMS circuit to incorporate unlabeled data viemodels can be used to give pseudo labels for unlabeled data,
Bayesian co-learning. In particular, the proposed approach tteen the most con dent predictions from a particular model are
composed of three major components. First, the entire circuised as pseudo samples for the other model. In each iteration
of interest is partitioned into multiple blocks as shown irstep,highly-con dentpseudo samples are fused with the small
Fig. 2. Second, circuit-level performance models are built toumber of available labeled samples to build a new model.
map the block-level performance metrics to the Pol at th€&he experimental results demonstrated up@% reduction in
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Fig. 4 The semi-supervised col-learning modeling frameworkig. 5 (a) Process of lithography simulation with optical
is illustrated [19]. and resist models [20]. (b) Photoresist exposed to light. (c)
Thresholds for aerial image determine simulated CD, which
simulation cost when compared to sparse regression basdwuld match manufactured CD.
approaches.
to which photoresist will be removed depends on various factors,
F. Challenges i.e., the property of the photoresist material, lithography system,
Recent works starting from the CL-BMF framework in [14],and mask patterns. Thus in the second step, the resist model is
where partially labeled samples are utilized in the modelingsed to compute the locations, shapes and sizes of the printed
task, and then the leverage of unlabeled samples in [18] hpattern according to the light intensity map, i.e., aerial image,
demonstrated a new trend in the performance modeling eld. liilom previous step. One intuitive understanding about the resist
fact, the focus has shifted from the computationally expensiveodel is to determine the threshold to cut through the light
supervised learningparadigm to thesemi-supervised learning intensity map for each layout pattern, such that the simulated
paradigm where a smaller number of simulations is needed pattern matches the actually printed one, as shown in Fig. 5(c).
build accurate models. This shift was mainly driven by théccurate lithography modeling is critical to guarantee yield, but
technology scaling which is continuously making the modelingme consuming as well.
task more challenging. Despite the advancement in the perfor-
mance modeling eld, some challenges are still present, with- Accuracy-Driven Modeling
the two major ones being (i) the nonlinear behaviour and (i) It is usually dif cult to directly measure the light intensity
dimensionality. on the photoresist, so the objective of lithography modeling is
Most of the techniques used to address the performange match the eventual output patterns with the manufactured
modeling task use polynomial models which are in practice pargnes. Several problem formulations have been proposed for this
metric models. With the continuous scaling of IC technologysroblem. Shim et al [21] proposed an arti cial neural networks
performance models are becoming increasingly nonlinear, agdNN) to predict the 3D height of photoresist at any given
the polynomial models will soon fall short of capturing suchpcation in the layout, as shown in Fig. 6. The model takes a
highly nonlinear behavior. feature vector sampled from a layout clip centered by the point
While using non-parametric models can help address thg interest and feeds to the ANN. Each feature vector consists of
nonlinearity challenge, it further exacerbates the dimensionalig density values from 6 concentric circles with 10nm intervals.
problem. Hence, new techniques are needed to address Wigh 5 hidden layers and 7 hidden nodes for each layer, they
dimensionality problem to pave the may to non-parametrigemonstrate an accuracy about 5% root mean square (RMS)
modeling. The rst attempt towards this goal was seen witlrror of the initial resist height.
the semi-supervised learning techniques; however, more workanother problem formulation of lithography modeling is to
is needed at this front. predict the 2D printed resist patterns instead of the resist height.
The output will be a 2D image like the last gure in Fig. 5(a).
This problem can be tackled in two ways. Given a layout
Lithography modeling takes mask design as input and sinalip, we can compute its light intensity and then predict its
ulates the printed patterns of the lithography system. Fig. 5(alicing threshold for each feature. Once the threshold is known,
shows the typical process on how a lithography model operatescovering the printed patterns using light intensity map is
for contact layers. The rst step uses the optical model to conpossible. This method is also called various threshold approach
pute the light intensity on the photoresist. Photoresist exposed(#TR). The other method is to modulate the light intensity
strong light will be removed, as shown in Fig. 5(b). The degremap with Gaussian kernels, such that a constant threshold

IIl. M ACHINE LEARNING FORLITHOGRAPHY MODELING
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Fig. 6 ANN model to predict resist height [21]. leg] 8 Training ow with transfer learning and active learning

Fig. 7 Comparison between CNN model and Calibre CTR and
VTR models [22].

can be used for any input layout clip. This is called constant
threshold approach (CTR). Watanabe et al [22] adopted the VTR
model and construct a convolutional neural networks (CNN) to
predict the thresholds for the center contact of a given layout

clip. With 3 convolution layers and 2 fully connected Iayers,:ig_ 9 Transfer learning scheme with the r&tlayers xed

they demonstrate 70% smaller prediction errors compared wWilfhen training for target domain, denoted as, TEO].
conventional VTR and CTR models in Mentor Graphics Calibre

[23], as shown in Fig. 7. the entire data space. They also prove that with assumptions

B. Data Ef cient Modeling on the Lipschitz continuity, some extent of generality can be
uaranteed.

Fig. 11 shows the amount of training data required given

starget accuracy in the RMS errors of critical dimensions

Lin et al [20] argue that the cost of data preparation is ver
high for lithography modeling, i.e., requiring measurement from
manufactured wafers. Meanwhile, the accuracy and generality%

a model highly depend on the amount of training data availabl\(ng)' "CNN” denotes training with pure N7 data like that in

Therefore, reducing the amount of data required to achie 2], "CNN TFo" denotes the incorporation of transfer learning

high modeling accuracy is necessary. By observing the potenjal CNN, “ResNet Tg” denotes the incorporation of transfer

similarity between datasets from neighboring technology nod garnlng\l_t”o dre5|dual hneulr?al rl\lletw_o rks _(stN_etg, ban;i “Restet
they integrate both transfer learning and active training da a{: 07 enotes that ResNet Is trained with both transfer
selection into the VTR modeling problem. Fig. 8 shows the o earning and active data selection. Transfer learning can achieve

of training an N7 model with the assistance of N10 data. Thel?e 10X reduqtlond on th? amount OI rehquwec:j tralnwg data.
are two assumptions in the ow, ntegrating active data selection can further reduce the amount

. ) for some target CD RMS errors such as 1.5nm and 2.25nm.
Large amount of N10 data is available and there ar@ventuallys 10X reduction can be achieved

correlation between N10 and N7 data.
N7 dataset is initially unlabeled and querying the labels for
N7 data samples is possible.

The knowledge transfer is realized with a (TBcheme in
Fig. 9 in which an N10 model is rst trained with N10 data and
then weights are ne-tuned with N7 data to obtain the N7 model.
The rst k layers are xed in ne-tuning. Smaller parametkr @ (b)

indicates more exibility in ne-tuning, while largelkk means ) ]
less exibility. The active data selection tries to further reduc&d- 10 Example of (a) bad data selection and (b) K-Medoids

the amount of training data required by selecting representatigliStering selection in 2D space [20]. Three selected points are
N7 data samples for training, as shown in Fig. 10. A K-MedoigBighlighted. Circles denote three clusters centered by selected

clustering technique is developed to increase the coverage R#NtS.
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Fig. 13 Example illustration of convolutional neural network

. L . . architecture for hotspot detection [48]. “H” denotes hotspot and
Fig. 11 Amount of training data required for N7 given targety» genotes non-hotspot.

CD RMS errors with enough N10 data available [20].

closure. A general problem formulation for hotspot detection
is as follows.

Problem 1 (Hotspot detection)Given two sets with hotspots and

non-hotspots layout clips, one as training set, the other as testing
set, the task of hotspot detection is to construct a model based
on the training set, such that the model can classify hotspots
on the testing set with maximum accuracy and minimum false

(G (b) alarms.
Fig. 12 Example of hotspot patterns [24]. The detection accuracys the ratio between the number of
correctly-detected hotspots and the number of real hotspots,
C. Challenges while the false alarmis de ned as the number of non-hotspots

that are wrongly recognized as hotspots.

I__|thograp_hy modc_almg remains to be an act|ye area for ma Existing hotspot detection methods mainly fall into three cat-
chine learning applications. There are still various challenges, .~ ' =© : . . .
. ) . egories: lithography simulation, pattern matching, and machine
For instance, the formulations aforementioned are mostly regres:

sion tasks and most of the time it still requires the calculation (ﬁarnmg. Lithography simulation is reliable but time consuming

light intensity map (aerial image in Fig. 5(a)). Aerial image sim; 5], [26]. Pattern matching methods rst build a library of
9 y map g 9. ' 9 hotspot patterns. Any new pattern to detect is compared with the

ulation is still time consuming. Eventually end-to-end Ieamm(%xisting patterns in the library and marked as hotspot if a match

that takes a mask pattern as input and produce the correspon g e und [27], [28]. This type of techniques including fuzzy

contours of the resist pattern as output is desired. This requires ; . .
; . at}ern matching lacks the capability to predict never-before-
generative models such as auto-encoder or generative advers:fna

S : ~Seen hotspot patterns [29], [30]. On the other hand, machine
networks [1]. However, the challenge lies in the high resolutio . o
. . o ) S arning approaches have demonstrated good generalization ca-
of images. The lithography critical dimension is usually aroun

2 3m, which means a feature may be impacted by featurds: bility to recognize unseen ho_tspot p_at_terns [31]-[39]. These
methods generally perform one-time training on a labeled dataset

2 3m away from it. Suppose the target RMS error is 1nm . ; . )
fo obtain a machine learning model and predict whether a new

for an end-to-end model. Then we need to sample at IeasiaaOut attern is a hotsoot or not ef cientl

4000 4000image as the input to the model and only 1 pixe youtp P Y-

of mis-prediction is allowe_d near the contom_Jrs of the pnnteg\' Machine Learning Models

patterns. The large image sizes lead to complicated networks and _ _

slow inference. Meanwhile, the requirement of high accuracy is Various machine learning models have been used as hotspot

dif cult to achieve as well. Therefore, compressed representati¢tgtection kernels including SVM [40], [41], ANN [40], and

of the images or network sketching techniques may be useful Bgosting methods [42], [43]. Zhang et al [43] also propose

tackle this problem. an online learning scheme to verify newly detected hotspots and
incrementally update the model. Deep neural network (DNN)
IV. MACHINE LEARNING FORHOTSPOTDETECTION classier has been adopted for hotspot detection [44], [45].

DNN is able to take the high-dimensional layout and perform
Various design for manufacturability (DFM) techniques havautomatic feature extraction during training, which avoids the
been proposed to bridge the wide gap between design demantsnual efforts to reduce select feature extraction methods.
and manufacturing limitations introduced by the current mairPromising empirical results have been observed with DNN in
stream 193nm lithography. However, due to the complexitgeveral papers [44]-[47]. Fig. 13 gives a typical con guration
of lithography systems and process variation, failure to prirdf DNN structure.
speci ¢ patterns still happens, known as lithography hotspot. In spite of the convenience in automatic feature extraction, the
Examples of two hotspot patterns are shown in Fig. 12. performance of DNN highly relies on manual efforts to tune the
Lithography hotspot detection often requires expensive lithogretworks, e.g., the number and types of layers. Matsunawa et al
raphy simulation. Therefore, ef cient and accurate lithographjA5] propose a DNN structure that can achieve low false alarms.
hotspot detection is desired for layout nishing and desigrYang et al [48] propose Discrete Cosine Transform (DCT) based
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feature representation to reduce the image size for DNN with a
biased learning to improve accuracy and decrease false alarms.

B. Challenges

Machine learning techniques have achieved tremendous suc-
cess in lithography hotspot detection. However, to label enough
layout patterns in preparation for the training set, a large number
of lithography simulations are required. Especially for layout
designs at the early stage of a new technology node, the amount
of labeled data samples is limited. Hence, it remains challenging (@) (b)
to pqild r_‘nachine Iearning mpde_ls.with_a much smaller number of Fig. 14 (a) Mask synthesis ow: (b) EPE and PVBand.
training instances while maintaining high detection performance
of the models, i.e., increasing the data ef ciency.

There are several options to improve the data ef ciency for
hotspot detection such as semi-supervised learning and active
learning. Semi-supervised learning can be a viable option to
reduce the upfront cost and time associated with training a
model. It leverages both labeled and unlabeled samples to help
the model training and alleviate the dependency to a large
amount of labeled training data. It is being actively explored
in image recognition, neural language processing, etc [49].

Besides the data efciency issue, [50] shows that layout
datasets are highly imbalanced because the number of lithog- ) o
raphy hotspots is much less than the number of non-hotspot™i9- 15|Ilustrates the motivation of OPC. Due to the extremely
patterns. With such a setup, a large number of samples Soall feature sizes, the actual printed patterns may be completely
needed to guarantee enough hotspot samples for building && the design target, while OPC shifts the edge segments of
curate classi cation models. This translates to an enormoi@rget features such that the printed patterns approach the design
computational cost associated with running a large number &gets. OPC alone is not enough to achieve robust lithography
lithography simulations. Active learning is a special case dyrinting. Fig. 16 demonstrates the necess?ty.of SRAF generation,
semi-supervised learning, and has the ability to query instanda&cause the robustness to process variation also needs to be
based upon past queries and the labels from those queriesMipimized. Fig. 16(b) shows the PVBand of printing contours
determines which new instances to be labeled and added i@ @ contact. By inserting SRAFs in Fig. 16(c), PVBand can

the training set [51], [52]. For example, it is preferred to seledt® decreased. At the same time, the SRAFs are too small to
more hotspots for training to improve the accuracy. be printed on the wafer, which means eventual wafer will only

contain design targets.

Fig. 15 Motivation of OPC [53].

V. MACHINE LEARNING FORMASK OPTIMIZATION . - .
A. Optical Proximity Correction

'(\j/l?fk _synthesit?ke.s al signi c}ant ar::ounttr?f tl.m(_a n rt]he chk- Conventional model-based OPC requires iterative and massive
end design ow. A typical ow Of mask Synthesis IS Shown In oo ¢ lithography simulation [55]. Although it is able to
Fig. 14(a). Sub-resolution assist feature (SRAF) generation aéanerate high quality solutions, it is time consuming and the

optical proximity correction (OPC) are two key steps in mas onvergence is slow. Previous work proposes regression based

synthesis. SRAF refers to the small features that will not bgpproaches to achieve fast full-chip OPC with acceptable perfor-

actually printed on wafers but may help the printing of targ%ance loss [53], [56], [57]. In these approaches, design targets

features. OPC refers to shifting the edge segments of featur
for robust lithography printing. Both SRAF and OPC need taer% fragmented and features are extracted from the fragmented

pass mask rule check (MRC) and lithography compliance che%??’om for model training and prediction. Due to the complicated

(LCO).
The robustness of lithography printing is usually evaluated
with edge placement error (EPE) and process variation band
(PvBand) by performing lithography simulation under different
ffocus, dosg conditions. Fig. 14(b) gives an example for
de nitions of EPE and PVBand. Under various lithography
conditions, an inner contour, an outer contour, and a nominal
contour can be obtained for each feature. EPE is de ned as the @ (b) ©

edge difference between the nominal contour and the design

target. PVBand is de ned as the band between inner and oufeld- 16 Motivat.ion of SRAF [54]. (a) An isolated c.ontact'and
contours, measuring the sensitivity to process variations. TH& OPC pattern; (b) printed pattern with OPC only; (c) printed

objective of mask synthesis is to minimize EPE and PVBand Pattern with both SRAF and OPC.
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optical proximity effects, the regression models need to be
complex, but the models often suffer from over- tting issues.
It is dif cult to nd general yet accurate ones.

To overcome the over-tting issue, Matsunawa et al [58]
proposed a hierarchical Bayes model (HBM) with concentric
circular area sampling (CCAS) as the feature extraction tech-
nique. HBM trains a generalized linear mixed model to consider
various edge types, including normal, convex, concave, and line-
end edge, by regarding each edge type as a random effect with a
random variance. HBM can generate solutions with comparable
quality to that from 10 iterations of conventional model-based
approach, while it is much more ef cient. Thus, HBM can be
used as a starting point for model-based approach and speedup
the convergence.

Recently, Yang et al [59] presented GAN-OPC, i.e., the rst
generative adversarial neural networks (GAN) for OPC. They
incorporate conditional GAN [60] and jointly train a generator
and a discriminator for OPC. Fig. 17 shows the architecture of
GAN-OPC. The generator has an auto-encoder structure [61], Fig. 17 Neural network architecture of GAN-OPC [59].
which takes a design target and outputs a mask clip. The
discriminator is a classi er that differentiates generated masks
and reference masks.

Consider target patternd = fZ!;i = 1;2;:::;Ng and the
corresponding reference mask &&t= fM,; ;i =1;2;:::;Ng.

Let G(z; W) represent a generator that generaesllowing Fig. 18 GAN-OPC ow [59].
a distributionpg, whereWy is the parameters for the generator.

Let D(x; W) represent the probability ok drawn from a inference is only around 0.05% of the entire runtime. GAN-OPC

distributionpy, whereWy is the parameters for the discriminator. .
o . not only speedups the convergence of ILT, but also improve the
For simplicity, we sometimes droy/y and Wy for G and D, solution quality

respectively. The objective of discriminator is to differentiate
generated mask and reference mask, B. Sub-Resolution Assist Feature Generation

max Eziz [logD(Z';M )] ©) Conventional SRAF generation includes model-based and
) ) rule-based approaches. Model-based SRAF generation usually
+Eziz [L logD(Z';G(Zh): requires lithography simulation to determine the locations for
The objective of generator is to deceive the discriminator b¥RAF insertion, which leads to high-quality and robust lithog-
maximizing the log-likelihood of the discriminator predictingraphy printing [63]-[66], but it is not very scalable to large
the generated mask is the reference mask, designs. Rule-based approaches leverage complicated look-up
max Ez:, [logD(Z';G(Z"))]: (7) tables to achieve ultra fast turn-around time, while its per-
¢ formance heavily relies on the look-up tables and it requires
huge amount of engineering effort to maintain them [67], [68].
Machine learning approaches can bridge the gap between fast
mGin Ezez M G(zY 5 (8) rule-based approaches and high-quality model-based ones [54],
9].
Existing machine learning approaches divide a layout clip
into small grids/pixels and formulate a classi cation problem, as

We also want to minimize the difference betwebh and
G(zY),

Combining all the objectives, the training process can be form!ﬁ
lated into a min-max game,

mGin max  Ez:z llogD(Z";M )] shown in Fig. 19(a) [54]. A pixel with label 0 indicates no SRAF
+Ezi 7 [1 logD(Zt: G(ZY)] ) at the corresponding Ipcation and that with Iabe_l 1 indicates that

" 2 an SRAF should be inserted. Thus, the classi cation problem

tEziz M G(Z)) is to predict a label for each pixel given its feature vector.

where the last term of, norm for Eq. (8) is squared for The feature vector for a pixel is sampled using CCAS, as
optimization. Eq. (9) can be optimized with various stochastishown in Fig. 19(b). In order to generate SRAFs for the entire
gradient descent algorithms [1]. layout clip, it is necessary to make predictions for all pixels.
The output of GAN-OPC is used as the starting point for & post processing step is followed to actually insert SRAFs
conventional ILT engine [62], as shown in Fig. 18. Comparedith the guide of predictions and following all the design rules.
with conventional ILT, GAN-OPC ow is reported to achieve 9%Experimental results demonstrate 10X speedugd in 2m ?
reduction in EPE error, 1% reduction in PVBand, and over 2¥ayout windows, and 3X speedup for 1602 layout clips, with
reduction in the overall runtime. The runtime for the generatdogistic regression or SVM as the classiers. SVM provides
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